个人陈述代写-谷歌人脸识别系统

本文主要讲述的是谷歌人脸识别系统,使用谷歌进行人脸识别的最新方法是使用2亿张图像和800万个唯一身份。与任何公开可用的其他数据集相比,该数据集的大小被认为是非常大的(Parkhi, Andrea和Andrew, 2015)。谷歌发表了一篇关于人工智能系统的论文,认为谷歌的FaceNet是识别人脸最合适的方法。有证据表明,“FaceNet在一个名为标记的野外人脸识别数据集上实现了近100%的准确率,该数据集包含了超过1.3万张网络上的人脸图片”(哈里斯,2015,第1页)。本篇个人陈述代写文章由英国论文通AssignmentPass辅导网整理,供大家参考阅读。

The most recent method of face recognition by Google was done by the use of 200 million images and 8 million unique identities. This size of the dataset is considered to be very large in comparison to any other dataset that is publically available (Parkhi, Andrea and Andrew, 2015). Google has published the paper on the artificial intelligence system that claimed that FaceNet by Google is the most appropriate approach for recognizing the human faces. Evidences have shown that “FaceNet achieved nearly 100-percent accuracy on a popular facial-recognition dataset called Labeled Faces in the Wild, which includes more than 13,000 pictures of faces from across the web” (Harris, 2015, p. 1).
One of the significant approaches done by Google in face recognition was the Google Glass. The face recognition system of Google Glass meant to help people in social interaction. Face recognition is considered as the very first step of face to face interaction. Google had proposed the system of the wearable Google Glass that also worked as the social assistant and included those applications such as face detection, eye localization, face recognition and a user interface for personal information display. Google incorporated the artificial intelligence technique of deep learning that has been very effective in recognizing various objects. This is the reason that Google has acquired the deep learning start-ups in the recent years (Mandal et al., 2014).
Face recognition is the revolutionary technique that has made significant changes in the world of Internet. Face recognition can extract the useful recognition information from the digital images with the use of deep learning and neural networks. Deep learning and neural networks are very helpful in solving the problem of face recognition. The biometrics and nodes help in accurate face recognition. Facebook is the most popular social networking site that uses face recognition technology effectively. Facebook has been able to detect the faces that are tagged by the users. This paper discussed the technology of face recognition and reasons of its popularity. It concludes that face recognition technology has undergone significant changes in the analysis and algorithms. It can be concluded that face recognition has the ability of recognizing thousands of faces, as Google has also used this technique for its projects like Google Glass and FaceNet. Therefore, face recognition technology is highly dependent on deep learning and neural networks for accuracy and efficiency.

如果需要英国论文代写,就来我们英国论文通AssignmentPass辅导网,点击上方栏目列表,我们有毕业论文代写、Essay代写、Assignment代写和PS代写等各种服务等着你,客服24小时在线,欢迎咨询!